
page 1 of 2

Id Title Status
M-1 Validate Interface Requirements by Inspection Against Component Interfaces Active
M-2 Validate Requirements by Inspecting Against Quality Criteria and System/Software Background Artifacts Active
M-3 Validate Requirements by Inspecting Bidirectional Traces Active
M-4 Verify Implementation of Requirements or Design in Source Code or Scripts through Manual Inspection Active
M-5 Determine Reuse Applicability by Manually Comparing Operational Environments Active
M-6 Validate Safety Requirements by Inspection of Traces to Fault Trees and FMEA Active
M-7 Validate Requirements by Inspecting Traces to Scenarios Active
M-8 Verify Autogenerated Software Implementation by Inspecting Traces from Requirements to Rational Rose Design Model Active
M-9 Verify Software Code Quality using Static Analysis Tools Active
M-10 Validate Test Plan by Inspection Active
M-11 Verify Test Execution by Inspection of Test Cases, Inputs and Results Active
M-12 Verify Adequacy of Software Architecture Dynamically with Executable UML Models Active
M-13 Verify SW Interface Implementation by Inspection Against Interface Design Active
M-14 Verify Software Behavior for Off-Nominal Conditions using Independent Testing Active
M-15 Verify and Validate Software Design using UML Model Active
M-16 Validate Test Design by Inspecting Test Scripts and Validated Requirements Active
M-17 Validate Software Architecture by Inspecting Traces to Essential Properties Active
M-18 Validate Software Interface Design Dynamically using Executable UML Active
M-19 Validate Requirements Dynamically with Executable UML Models Active
M-20 Verify Critical Software Changes By Inspecting Change Requests Active
M-21 Validate Test Design by Inspecting Traces from Scenarios Active
M-22 Validate Test Environment by Inspecting Against Inputs and Conditions Identified from Behaviors/Scenarios Active
M-23 Validate Test Cases Dynamically Using Independent Testing Active
M-24 Validate Software Requirements by Tracing to Essential Properties of the System Active
M-25 Validate Test Cases by Inspection and Traces to Requirements Active
M-26 Validate Test Cases by Inspection Against Requirements and System Reference Model Active
M-27 Verify Software Architecture and Performance Requirements Dynamically using MagicDraw™ Cameo Active
M-28 Verify System/Software Architecture Using a Discrete Model of Performance Requirements in Stressing Scenarios Active
M-29 Assess Architecture Completeness by Inspection Against an Architectural Standard Active
M-30 Validate Software Requirements by Inspecting Traces to SysGoals Active
M-31 Validate Mission Project Use Cases by Inspection Against Concept Documentation Active
M-32 Verify Scripted Timeline Via Manual Multi-Directional Tracing Active
M-33 Validate Key Driving Requirement by Tracing to System Architecture and Stakeholder Expectations Active
M-34 Validate Feasibility Study Conclusions by Inspection Active
M-35 Validate Test Procedures by Inspection and Traces to Requirements Active
M-36 Validate Mission Project Operational Concepts by Generating Use Cases from Concept Documentation Active
M-37 End-to-End Fault Management Verification through Database Development and Analysis Active
M-38 Verify Software Implementation by Inspecting Traces to Requirements (Nominal, Off-Nominal and Hazards Scenarios) Active
M-39 Verify Software Design by Inspecting Traces to Requirements and Software Architecture Active
M-40 Validate System Behaviors Dynamically by Executing Simulations/Models Active
M-41 Verify Software Interface Design by Inspection Against Interface Requirements Active
M-42 Validate algorithm design through algorithm qualitative attribute assessment Active
M-43 Verify Interface Implementation By Tracing Component Behaviors to Interface Requirements and Source Code To Identify Missing or Unnecessary Interface Requirements Active
M-44 Verify Requirements Implemented using Off the Shelf Components through Structural Analysis to Evaluate Protections Against Execution of Dormant Code Active
M-45 Verify Requirements Implemented using OTS Components By Tracing Requirements to OTS Functional Documentation to Identify Unnecessary Functions and Missing Capabilities Active
M-46 Validate Complex Network Requirements, Architecture, Design, and Test Documentation through Layered Model Analysis Active
M-47 Verify via dynamic testing that test artifacts fully cover implemented requirements Active
M-48 Verifying Functionality/Behaviors Based on Static Analysis Results Active
M-49 Verify via dynamic testing that reused software is free from on-orbit anomalies discovered on legacy software Active
M-50 Validate candidate software issues via dynamic testing to confirm issue viability Active
M-51 Validate Modeled System Designs by Employing the Model-Based Testing Function of RoseRT to Demonstrate Required Behaviors Active
M-52 Validate System Security Categorization and Regulatory Security Requirements by Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 1) Active
M-53 Verify Security Control Selection and Threats/Risks Identification by Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 2) Active
M-54 Verify Security Control Implementation by Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 3) Active
M-55 Verify Security Remediation Actions by Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 4) Active
M-56 Verify Security Risk Action Plan before Operations by Inspection using Security Risk Management Framework (NIST-SP-800-37, Step 5) Active
M-57 Verify System Software Safety by Comparing Concept Documentation, Requirements, Testing, Design and Code with Hazard Analysis Documentation to Establish a Safety Case, Across the So Active
M-58 Examine System Design and Requirements using a Fault Tree Analysis Tool to Identify Potential Hazards and Their Causes Active
M-59 Verify Interface Implementation in Software by Simulated Dynamic Testing to Demonstrate Successful Software Component Integration Active
M-60 Verify Software Capabilities through Independent Testing of Operational Scenarios Active
M-61 Verify Software Implementation by Executing Independent Regression Tests to Demonstrate Software Behaves as Expected Active
M-62 Verify Suitability of Developer's Test Environment by Simulation of Developer Test Operations Against Test Environment Validation Criteria Active
M-63 Verify Test Coverage of Software through Analysis of Source Code and Test Artifacts using Software Coverage Analysis Tools and Coverage Criteria Active
M-64 Verify Performance Requirements Implementation via Simulated Dynamic Testing to Stress Software Boundaries and Limitations Active
M-65 Validate and Verify Regression Test Scope and Changes to Artifacts to Establish Integrity by Inspection Active
M-66 Validate Use Cases by Inspection Against Driving Documentation Active
M-67 Verify Requirements Implementation By Analyzing Test Results Using Statechart Assertions Active
M-68 Validate Key Capabilities via Dynamic Testing against High Risk Scenarios to Reduce Risk of Operations Active
M-69 Plan a Test Approach to Meet IV&V Analysis Objectives of Project s IPEP /TS&R Active
M-70 Validate System Interface Requirements by Inspection Against Documentation Active
M-71 Verify Software Design by Inspecting Traces to Requirements Using MATLAB and Rhapsody Active
M-72 Verify Software Implementation by Inspecting Traces to Requirements Using Understand for C++ Active
M-73 Validate Requirements by Inspecting Against Quality Criteria Active
M-74 Scenario-Based Requirements Analysis Active
M-75 Verify Flight Software Architecture With UML Model Active
M-76 Verify SW Design Active
M-77 Verify Requirements Implementation Active
M-78 Test Case Analysis Active
M-79 Stakeholder Analysis Active
M-80 IV&V Real Time Anomaly Support (RTAS) Active
M-81 Manual Source Code analysis (implementation of requirements/design) Active
M-82 Verify Interface Design using UML Model Active
M-83 Change Impact Analysis Active
M-84 Verify Architecture by Dynamic Simulation Active
M-85 Validate Interface Design through Model Checking Active
M-86 Verify Design and Implementation Active

page 2 of 2

Id Title Status
M-87 Validate Requirements Active
M-88 Validate Test Artifacts per Build Active
M-89 Artifact Delta Evaluation Active
M-90 Verify Design and Implementation - Compound Method (Proposed) Active
M-91 Verify FSW Design to Requirements Active
M-92 Static Code Analysis Active
M-93 Test Results Analysis Active
M-94 Qualitative Assessment of Requirements Active
M-95 Requirements Traceability Analysis (RTA) Active
M-96 Validate Test Plan Active
M-97 Verify Software Architecture Against Performance Requirements Active
M-98 Scenario Based Software Implementation Verification Active
M-99 Independent Testing Active
M-100 Validate Mission Project Operational Concepts by Inspection Against Concept Documentation Active
M-101 Verify Design Provides Dependability and Fault Tolerance Active
M-102 Verify SW Interface Implementation by Inspection Against Interface Design - Retired Active
M-103 Verify and Validate Requirement Implementation using Flow Diagrams to Uncover Missing, Conflicting, or Unnecessary Behavior Active
M-104 Verify Planning Artifacts for Legacy to Replacement Systems Transitions via Comparison to Relevant System Migration Standards to Ensure Effective and Complete System Transition and Ret Active
M-105 Verify PBRA/RBA Critical Behaviors are Appropriately Rated by Correlating Issues to Behaviors Active
M-106 Validate Program to Program High Level Concept Documentation by Manual Evaluation of Alignment of Required and Provided Services Across Elements Active
M-108 Validate Software Requirements meet dependability criteria and control identified hazards by inspection of traces to identified dependability attributes and safety hazards Active
M-109 Verify System Software Safety Documentation Identifies all known software based hazard causes and controls by inspection of Adverse Conditions/Failure Modes Active
M-110 Verifying CFS-related Fault Management Implementation in Source Code Active
M-111 Verify Requirements by Tracing from Requirements to Adverse Conditions to Test Results to assure Requirements do not cause Hazardous Conditions Discovered in Testing Active
M-112 Verify Subsystem Requirements and Architecture Elements to Address Stakeholder Needs and Manual Examination of the Relationships Between System Architecture, Subsystem Requireme Active
M-113 Determine CSCI release content that satisfies mission needs and enhances safety by analyzing open Software Change Requests (SCR) Active
M-114 Assess CSCI deployment readiness by analyzing mission needs, results of life cycle reviews, and impact of open Software Change Requests(SCR) Active
M-115 Using Systems Tool Kit (STK) to Perform Analysis on Project Telemetry Active
M-116 Uncover risk or assurance by using performance analysis techniques on mission critical COTS/GOTS software. Active
M-117 Validate Software Fault Handling by Independent Testing with Simulations Active
M-118 Verify performance requirements by monitoring system impacts of mission critical COTS/GOTS software. Active
M-119 Verify Implementation by Tracing Data Persistance Code to Values Used in Embedded SQL Code Active
M-120 Blue Team Vulnerability Assessment Method: Pre-Assessment (Phase 1) Active
M-121 Blue Team Vulnerability Assessment Method: Active-Assessment (Phase 2) Active
M-122 Blue Team Vulnerability Assessment Method: Post-Assessment (Phase 3) Active
M-123 Assure Cross-System Integrity of Critical Commands and Data Active
M-124 Develop Independent Capability-based Scenarios from Design Documentation Active
M-125 Validate Fault Protection Design and Requirement Flowdown Active
M-126 Verify JUnit implementation through manual analysis. Active
M-127 Assess Adequacy of Unit Tests Active

